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Abstract
It is shown that non-symmetric microobjects orient while settling under gravity in a viscous
fluid. To analyze this process, a simple shape is chosen: a non-deformable ‘chain’. The chain
consists of two straight arms, made of touching solid spheres. In the absence of external
torques, the spheres are free to spin along the arms. The motion of the chain is evaluated by
solving the Stokes equations with the use of the multipole method. It is demonstrated that the
spinning beads speed up sedimentation by a small amount and increase the orientation rate
significantly in comparison to the corresponding rigid chain. It is shown that chains orient
towards the V-shaped stable stationary configuration. In contrast, rods and star-shaped
microobjects do not rotate. The hydrodynamic orienting is relevant for efficient swimming of
non-symmetric microobjects and for sedimenting suspensions.

1. Introduction

In many biological, medical and industrial applications, it is
of interest to predict theoretically what is the sedimentation
velocity of small conglomerates of micro-particles under
gravity in a fluid [1–5] and how the settling speed can be
enhanced or decreased, by a suitable modification of the
configuration, or directly by a change of the relative motion of
the particles. This issue is especially important for mechanisms
of effective swimming, recently intensively investigated for
biological systems as well as for artificial micro and nano-
swimmers.

Swimming patterns of various microorganisms have
been extensively investigated experimentally and theoreti-
cally [6–17]. Microorganisms propel themselves owing to a
periodic change of their shape and possibly also its orientation
in space. Often the core cell does not deform, and the shape
is changed owing to waving, undulating or rotating flagella.
Typical sizes of bacteria, spermatozoa or algae lie in the range
from 1 to 200 μm, and their swimming speeds are usually up
to several hundred μm s−1. For such microobjects moving
in aqueous environments, the fluid inertia and the Brownian
motion are irrelevant [11]. Therefore, a theoretical model of
swimming should be based on hydrodynamic interactions [18]
between individual parts of the microobject, following from
the stationary Stokes equations and the appropriate boundary

conditions at the surface of the swimmer. Typically, in the
swimming problem a periodic sequence of flagella shapes
and the corresponding translational and rotational velocities of
their parts relative to the core cell are known as functions of
time, as well as the total force and torque exerted on the cell
center. The task is to determine the translational velocity of
the center, and also the cell’s angular velocity. There exist a
number of models of freely moving swimmers (the total force
and torque vanish).

However, the microorganisms are often denser than
the water in which they swim, by a few per cent
for the algae, approximately 10% for bacteria and 30%
for spermatozoa, and the mass distribution can be non-
uniform [11]. The gravitational force is essential for
explanation of the orientational mechanisms (gravitaxis)
observed experimentally, e.g. for algae [19, 20]. In general,
hydrodynamic interactions would tend to orient non-symmetric
microobjects settling under gravity. This effect, certainly
important for swimming, will be investigated in this paper.

We focus on a very simple model: a non-symmetric
‘chain’ of three identical spheres, with two pairs at contact, but
not the third one. Owing to the lubrication forces, the shape of
the conglomerate is fixed. In section 2, the accurate spherical
multipole method [21, 22] of solving the Stokes equations
is introduced, with the lubrication correction for the relative
motion of close surfaces [23], and the HYDROMULTIPOLE
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numerical code [23]. In section 3, we use this method to
evaluate the translational, rotational and spinning velocities
of the microobject, determine how it orients while settling
under gravity, and find the stable stationary configuration. In
section 4, we study how the settling speed depends on shape,
by comparing sedimentation velocities of all the stationary
configurations of three spheres [24–26]. We also investigate
how accurate is the point-particle approximation [27]. In
section 5 we summarize the results obtained for the chain
made of three spheres. We also check if chains with two arms
made of a larger number of beads orient hydrodynamically,
qualitatively in the same way as the simple three-sphere model.

2. The model of a moving asymmetric microobject

Consider three identical spheres falling under gravitational
forces F̃0 in an infinite fluid of viscosity η. A low Reynolds
number is assumed for the corresponding fluid flow. The fluid
velocity v(r) and pressure p(r) satisfy the stationary Stokes
equations [18, 28],

η∇2v − ∇p = 0, ∇ · v = 0, (1)

with the stick boundary conditions at the surfaces of the
spheres and no fluid flow at infinity. Therefore the translational
Ũi and rotational Ω̃i velocities of each sphere i = 1, 2, 3 are
linear functions of the force F̃0,

Ũi =
[

3∑
k=1

μ̃
tt
ik

]
· F̃0, (2)

Ω̃i =
[

3∑
k=1

μ̃
rt
ik

]
· F̃0, i = 1, 2, 3. (3)

The 3 × 3 mobility matrices μ̃tt
ik and μ̃rt

ik are to be found as
functions of the relative positions r̃l − r̃ j of the sphere centers.

In the following, as in [25], particle positions r̃i will be
normalized by the sphere diameter d , translational velocities
Ũi by the Stokes velocity, US = |F̃0|/(3πηd), angular
velocities Ω̃i by 2US/d , and time t̃ by two Stokes times,
2τS = d/US. The corresponding dimensionless quantities
are ri = r̃i/d,Ui = Ũi/US, t = t̃/(2τS),Ωi = Ω̃iτS,

μtt
ik = μ̃

t t
ik · 3πηd,μrt

ik = μ̃
rt
ik · 3πηd2/2,F0 = F̃0/|F̃0|.

In our model it is assumed that each sphere touches
another one. Once this happens, the spheres remain in
contact owing to lubrication forces [29]. Such configurations
will be called ‘chains’. As illustrated in figure 1, posi-
tions of the sphere centers, r1 = (−x/2, 0, z), r2 = (0, 0, 0),
r3 = (x/2, 0, z), are parametrized by the angle α

between the chain links, with x = 2 sin(α/2) and
z = cos(α/2). Orientation of the gravitational force is
arbitrary, F0 = (F0x , F0y, F0z).

Evaluation of the mobility matrices of chains requires a
special treatment, because now there are at least two contact
points. Moreover, it is essential to specify more precisely what
is meant by ‘the contact’. The first possibility is to assume that
there is no external forces other than gravity exerted on each
of the spheres. In this case, lubrication does not allow for any

Figure 1. Parametrization of a chain configuration.

relative motion of the touching spheres except their spinning
along the line of centers [29]. In the following, such a contact
will be called ‘beads’. The second option is to ‘glue’ the
touching spheres, imposing on them external torques, which
prevent them from any relative motion. Such a contact will be
called ‘rigid’. In appendix A, it is explained in detail what the
difference is between the mobility matrices for both types of
chains.

The essential task of this paper is to determine the 3 × 3
mobility matrices μtt

ik and μrt
ik both for chains made of beads

and the rigid ones. Because of hydrodynamic interactions of
the close surfaces, we have to go beyond the point-particle
approximation, and even beyond superposition of two-body
mobilities [18, 21].

Therefore we evaluate the three-sphere mobilities numer-
ically by the multipole expansion [18, 21]. The algorithm
from [22] and its accurate numerical FORTRAN implemen-
tation HYDROMULTIPOLE [23] are applied. The accuracy
is controlled by a varied order of the multipole truncation L
(see [22] for the definition of L and [22, 30] for a discussion
of the accuracy estimates). In this paper, we take a large value
L = 6. The results will be presented in section 3.

3. Motion of a chain

It is convenient to describe the motion of a chain (rigid or made
of beads) referring to its center of mass, R = (r1 +r2 +r3)/3,
because in this case the total external torque vanishes. The task
is to find its translational velocity, U = (U1 + U2 + U3)/3,
and the rotational one, Ω = Ω2 = (Ω1 + Ω2 + Ω3)/3.
For the chain made of beads, the spinning speed ωbeads

along the chain arms also needs to be determined; from the
symmetry of the system it follows that ωbeadsr̂12 = Ω1 − Ω2,
and −ωbeadsr̂32 = Ω3 − Ω2, with the unit vector
r̂i j = ri j/|ri j |, and the standard notation for the relative
positions, ri j = ri − r j .

The translational and angular velocities of the chain
depend linearly on the total gravitational force acting on the
chain, F = 3F0,

U = μtt ·F , (4)

Ω = μrt · F , (5)

ω = μω ·F , (6)

with the mobility matrices of the chain to be found. Owing to
the symmetry, in the frame of reference shown in figure 1,

μtt = 1
3

(
μ1(α) 0 0

0 μ2(α) 0
0 0 μ3(α)

)
, (7)

2
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Figure 2. Degrees of freedom of chains at the characteristic
orientations with respect to gravity. Top: gravity along x; middle:
gravity along y; down: gravity along z.

μrt = 1
3

( 0 μb(α) 0
−μa(α) 0 0

0 0 0

)
, (8)

μω = 1
3 ( 0 μω(α) 0 ) . (9)

In the above equations, the factor 1/3 has been introduced.
With this choice, in the frame of reference shown in figure 1,
and with the adopted normalization, the mobility coefficients
for the chain are just equal to the corresponding velocity
components, μ1 = Ux , μ2 = Uy , μ3 = Uz , μa = −�y and
μb = �x . The physical meaning of the coefficients is indicated
in figure 2.

The mobility coefficients in equations (7) and (8) are
determined from combinations of the three-sphere friction
coefficients for the individual spheres, as outlined in
appendix A. In general, the mobility coefficients for a
chain of beads differ from those for a rigid chain at the
same configuration and in this case they will be denoted by
the corresponding superscripts. Thus, μbeads

2 �= μ
rigid
2 and

μbeads
b �= μ

rigid
b . For a rigid chain, there is no spinning and

μ
rigid
ω = ωrigid = 0, while the chain of beads does spin,
μbeads
ω = ωbeads �= 0. However, for a rigid chain and the chain

of beads at the same configuration, μ1, μ3 and μa are identical
and those coefficients will not be marked by any superscripts.

The translational motion will now be determined. The
corresponding mobility coefficients are evaluated numerically
and plotted in figure 3 as functions of the angle α. For

Figure 3. The chain translational velocity components.

Figure 4. The chain angular and spinning velocity components.

α = π/3, the sphere centers form an equilateral triangle
with three contact points; in the following, this configuration
will be called ‘a star’. For α = π , the sphere centers are
aligned; this configuration will be called ‘a rod’. For μ2 and
μ3, when the base of the chain is perpendicular to gravity, then
its settling velocity is a decreasing function of the apex angle
α, in agreement with the intuitive prediction that stretching the
arms should increase the friction force. For μ1, when the base
of the chain is parallel to gravity, it is intuitive to expect the
opposite effect: with the increase of α, the chain aligns along
gravity, and its resistance is weaker. This is indeed observed
for a wide range of the larger angles, except those relatively
close to π/3.

For a given shape (fixed α), we now compare the
magnitude of μ1, μ2 and μ3. Settling is always fastest if
gravity is along the base of the chain, and slowest if gravity
is perpendicular to the plane of the chain. Notice that in the
last case, the chain made of spinning beads sediments faster
than the corresponding rigid one.

The spinning speed and rotational velocities are plotted
in figure 4. The spinning speed reaches a maximum for a
very small value of α, and then slowly decreases. For a

3
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Figure 5. The mobility coefficients for a spinning chain of beads
with a small α.

wide range of the angles between the chain arms, the spinning
surfaces move with velocities which are still around 5% of
the settling speed. Next, we evaluate the chain rotation. The
corresponding mobility coefficients are plotted in figure 4 as
functions of α. Each component of the angular velocity is
zero for stars and rods, and has a maximum at intermediate
values of the angle between the arms, smaller than 2π/3 for a
rigid chain. Therefore the speed of the hydrodynamic orienting
is very sensitive to shape. It is remarkable that spinning of
the beads has a profound effect on the chain rotation. The
spinning increases the angular velocity by at least a factor of
two in comparison to the corresponding rigid chain at the same
configuration. Moreover, we observe a much wider range of
chain shapes for which the rotation is significant. Indeed,
the maximum is shifted to larger values of α, above 2π/3,
and there is a qualitative difference at small angles, where the
lubrication interactions between the spinning beads keep the
chain rotating.

When the close surfaces of spheres 1 and 3 move with
respect to each other, then the mobility coefficients μbeads

2 ,
μbeads

b and μbeads
ω decrease rapidly with decreasing α only if

α − π/3 becomes extremely small, as seen in figures 3
and 4. This is the typical lubrication interaction of very
close surfaces in relative motion [29]. Actually, the relative
mobility coefficients decrease to zero as the inverse logarithm
of the gap size. This scaling can be seen in figure 5,
where μbeads

2 , μbeads
b and μbeads

ω are plotted as functions of
[−1/ ln(α − π/3)]. In fact, to account for the relative motion,
we plot μ2(α)−μ2(π/3) rather than μ2(α), with the zero-gap
mobility μ2(π/3) = 1.739 (see section 4.1 for the derivation).
Numerical results are not available when the size of the
gap between two surfaces is comparable with the numerical
accuracy. For smaller values of α, asymptotic expressions
analogous to equations (12) and (13) in [25] could be derived
using the same procedure. Notice that in the lubrication
regime, the spinning speed of the beads is significantly larger
than the angular velocity of the chain.

It remains to discuss the main issue of this paper, that is
how the chains orient with time. Taking the laboratory frame of

reference (X,Y, Z), in which F0 = (0, 0,−1), we parametrize
the chain configuration by the Euler angles θ , ψ and ϕ. Here
θ is the angle between the Z axis and the chain symmetry axis
z, with cos θ = −F0 · ẑ, and ψ is the angle between the line
of nodes and the axis x , and φ is the angle between the axis X
and the line of nodes. From equations (5) and (8) we obtain,

θ̇ = −(μa sin2ψ + μb cos2 ψ) sin θ, (10)

ψ̇ = −(μa − μb) cosψ sinψ cos θ, (11)

ϕ̇ = (μa − μb) cosψ sinψ, (12)

If ψ �= nπ/2 where n = 0, 1, 2, . . ., and λ = μa/(μa − μb)

then the solution is

sin2 θ = C tan2λ ψ/ sin2 ψ. (13)

For π/3 < α < π , the calculated mobility coefficients
μa and μb are positive, and therefore from equation (10) it
immediately follows that θ evolves towards zero, e.g. towards
the chain axis antiparallel to gravity. This orientation of the
chain will be called ‘V-shaped’. It is the only stable orientation
of the chain with π/3 < α < π .

Two examples of a one-dimensional dynamics are
recovered from equation (10) for two symmetric cases with
ψ = 0 and ψ = π/2, respectively. For ψ = 0, equation (10)
reads,

θ̇ = −μ sin θ, (14)

with μ = μa and the solution,

tan(θ/2) = A exp(−μt). (15)

This dynamics is illustrated in figure 2, with its upper C-shaped
configuration, which corresponds to θ(t = 0) = π/2, evolving
towards the bottom one (V-shaped). The sense of the rotation
is illustrated by the arrow. For ψ = π/2, equation (14) also
holds, but now with μ = μb. This dynamics is also illustrated
in figure 2, now with its middle plane configuration, which
corresponds to θ(t = 0) = π/2, evolving towards the bottom
one (V-shaped). The sense of the rotation is illustrated by
arrows of different lengths.

To complete the analysis, we still need to compare
a typical timescale of the hydrodynamic orienting to that
characteristic for the settling motion. We therefore find the
angles αa,max and αb,max which correspond to the maxima of
μa and μb, respectively, and then calculate the ratio of both
time scales, 2πμ1/μa and 2πμ2/μb, at αa,max and αb,max,
respectively. For the rigid chain, both ratios are of the order
of 300. For the spinning beads, 2πμ2/μb and 2πμ2/μω at
αmax are of the order of 150. Therefore the characteristic
timescale of the hydrodynamic orienting is at least two orders
of magnitude larger than that of the gravitational settling.
Reorientation of the sedimenting non-symmetric particles is
significant for such systems which stay under gravity for a
sufficiently long time.

4
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Table 1. Settling velocities U of stationary configurations of three spheres.

Rod ‖ F Rod ⊥ F Vertical chain Star ‖ F Star ⊥ F Kissing Ring

g g g

Spheres 1.95 1.63 1.63–1.90 1.90 1.74 1.75 1.74–1.79–1
Point-particle
approximation

2.00 1.61 1.61–2.04 2.04 1.75 1.81 1.75–1.74–1

4. Stationary configurations

The goal of this section is to show which chain configurations
do not orient under gravity. Settling speeds of such
stationary configurations will in addition be compared to
the translation velocities of other stationary configurations of
three spheres, with the emphasis on those with the spinning
particles.

By definition, at a stationary configuration the spheres
have equal translational velocities, Ui = U . Such a
configuration is an equilibrium solution of the dynamics of the
relative positions. Notice that U is time-independent. In our
case, obviously, i = 1, 2, 3.

4.1. Stationary chains

For chains, the equilibrium condition Ui = U is equivalent to
the relation, Ω = 0, which takes the form

μa(α)Fx = μb(α)Fy = 0, (16)

if equations (5) and (8) are applied. According to the numerical
results plotted in figure 4, equation (16) has the solutions,

(i) an arbitrary α, and Fx = Fy = 0,
(ii) an arbitrary F , and α = π/3, or π .

Condition (i) corresponds to the vertical chain equilibria, found
in [25] and sketched in table 1. These are the chains with the
symmetry axis parallel to gravity. Condition (ii) corresponds
to stars and rods, also sketched in table 1.

Notice that from the symmetry it follows that the beads of
the stationary chains do not spin, ω = 0. The settling velocities
U of the stationary chains will now be evaluated. The results
will also be compared with the point-particle model. For
touching spheres, such an approximation has to take into
account additional constraint forces, which do not allow the
points that approximate the touching spheres to change the
interparticle distance [27].

Consider first the vertical chains. From symmetry with
respect to reflections x, X → −x,−X and y → −y it
follows that U is vertical. Values of the settling velocities,
U(α) = μ3(α), evaluated in [25], and replotted here in
figure 3, span the range μ3(π) � U � μ3(π/3), with

μ3(π) = 1.630 458 19, (17)

μ3(π/3) = 1.902 2670. (18)

Similar values follow from the point-particle approximation
with constraints, 29/18 � U points � 229/112.

The settling velocities U‖ and U⊥ of the rods parallel and
perpendicular to gravity are now evaluated for the subsequent
values of the multipole order L � 30, and extrapolated to
L → ∞. Then,

U‖ = μ1(π) = 1.946 299 144, (19)

U⊥ = μ2(π) = 1.630 458 19. (20)

These values are again well approximated by the point-
particle approximation with constraints, with U points

‖ = 2

and U points
⊥ = 29/18. Both parallel and perpendicular rods

settle down vertically, i.e. along gravity. The calculated
velocities (19) and (20) agree with the previous experimental
and numerical results [1, 3].

In a similar way we calculate velocities of the stars. Notice
that owing to the symmetry with respect to rotation by π/3, the
stars located in the vertical plane settle with the same velocity,
independently of their orientation. However, their settling
velocity U‖ is larger than that of the stars oriented horizontally,
U⊥. In both cases, the stars translate vertically. We evaluate,

U‖ = μ1(π/3) = 1.902 267 03, (21)

U⊥ = μ2(π/3) = 1.739 412 60. (22)

In the point-particle approximation with constraints,
U points

‖ = 229/112 and U points
⊥ = 7/4. The results (21) and (22)

obtained for the stars improve the accuracy of the previous
simulations [5], and agree well with the measurements [2].

In general, the stars and rods are inclined at a certain
angle with respect to gravity. In this case, their velocities
are not vertical, and the components follow from equation (7).
A special case of such inclined stars was discussed in [25],
where it was indicated by the dotted line in figure 15. In this
‘slanted equilateral chain’ configuration, a line of centers was
perpendicular to gravity.

Using the dynamics derived in section 3, we conclude that
the only stable stationary solutions of the dynamics of chains
are the V-shaped vertical chains. The hat-shaped vertical
chains are unstable. Rods and stars are neutrally stable if the
three contact points are kept. The stars and rods are generally
unstable against perturbations which separate out a pair of
touching spheres.

4.2. Comparison with other stationary configurations

The settling speeds of stationary chains will be now compared
with the motion of other equilibrium configurations of three
spheres. At equilibrium, the triangle formed by the sphere
centers has the following shape, size and orientation with
respect to gravity.

5
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Figure 6. Settling velocity U of the ring (equilateral horizontal
triangle) versus its side length . Equilibrium (solid line); rigid
system with constraints (dashed line), point-particle approximation
(point line) and the horizontal star (◦). Inset: U as a function of
[−1/ ln(− 1)] for very close particles.

• ‘Vertical chain’ (a vertical isosceles triangle with the
symmetry axis along gravity; the apex sphere touches each
of the base spheres).

• ‘Rod’ (a straight line of an arbitrary orientation with
respect to gravity; there are two contact points between
the sphere surfaces).

• ‘Star’ (an equilateral triangle at an arbitrary orientation
with respect to gravity; there are three contact points
between the sphere surfaces).

• ‘Kissing’ (an isosceles triangle with the symmetry axis
along gravity and touching base particles; the distance
between the contact point and the center of the apex
particle equals 1.578 634 diameter, see [25] and1).

• ‘Ring’ (an equilateral triangle of an arbitrary side length,
in the plane perpendicular to gravity, see [26, 31]).

In table 1, the stationary configurations are sketched and
values of their vertical velocities are listed, together with their
approximation by point-particles with constraints. We have
demonstrated that for a small number of particles, the settling
velocities of their stationary configurations can be within a
few per cent approximated by the point-particle model with
constraints. Notice that all the equilibria except the ring
are unstable, if arbitrary perturbations are allowed, including
separation of the touching surfaces [25].

The ring is the only equilibrium configuration with
rotation of the individual spheres. It is therefore interesting to
investigate whether the spinning increases the settling velocity,
as has been observed for chains made of beads. This problem
will be discussed in detail in section 4.3.

4.3. Stationary configurations with spinning

We now focus on the stationary configurations called rings.
The sphere centers form a horizontal equilateral triangle with

1 Settling velocity of the kissing equilibria, U = 1.754 3000, was evaluated
in [25]. Here we check that it is reasonably well approximated by
Upoints = 1.814 803.

Figure 7. Spinning velocity �o versus the size  of the ring.

an arbitrary length  � 1 of its side. Settling velocity U is of
course vertical. Its value U = |U | is evaluated and plotted
in figure 6 as a function of . In general, the particles are
separated from each other; they touch only in the limiting case
of  = 1, when the ring becomes the horizontal star, with
U = 1.739 412 60.

It is interesting to observe that if the particles are free to
spin, then the ring’s settling velocity has a maximum for a
very small gap between the sphere surfaces. The maximum
is clearly visible in the inset of figure 6. Bracketing this
maximum by the standard golden section search [32], we
evaluate the corresponding values of MU and U(MU ). The
subsequent multipole orders 1 � L � 28 are used, and the
results are next extrapolated to L → ∞, as in [25]. We obtain,
MU = 1.011 28 and U(MU ) = 1.793 94. For larger values of
, the settling velocity decreases to one (the Stokes value) with
 → ∞. In table 1, the ring velocities at  = 0, MU and ∞
have been indicated.

To check whether the existence of the maximum is related
to the spinning, we also consider a rigid system of three
spheres at the same configurations, but with the spinning
eliminated owing to constrained external torques. Velocities
of such configurations are also plotted in figure 6. They are
systematically smaller than the velocities of the ring. Indeed,
this example also indicates that spinning speeds up the rate of
settling by a small amount.

The point-particle approximation, U = 1+3/(4), is also
depicted in figure 6. Notice that for rings, no constraint forces
nor torques are applied, since the rings are also stationary
solutions of the point-particle dynamics. It is clear that
the point-particle approximation is much closer to the rigid
dynamics than to the spinning system.

Finally, we evaluate the spinning velocities of the spheres.
Here Ω1 = �or̂32, Ω2 = �or̂13, and Ω3 = �or̂21,
with �o, plotted in figure 7 as a function of the side length
. The maximum of �o is reached at the small distance
between the sphere centers, M� = 1.092 3791, but not
as small as MU . At the maximum, the spinning velocity
�o(M�) = 0.215 537 174, is as much as 12% of the settling
speed, U(M�) = 1.751 9797. At the maximum of U , the

6
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spinning is slightly smaller, with �o(MU ) = 0.177 04. These
two maxima are shifted with respect to each other, because U
becomes larger not only by an increase of �o, but also by a
decrease of the distance between the spheres.

Notice that for the ring configuration of the separated
spheres, the maximal spinning velocity is twice as large as
that for the horizontal chain of the touching beads. As a
consequence, the increase of the settling velocity is also twice
as large.

5. Conclusions

The goal of this paper has been to construct and study a simple
model of a chain-like asymmetric microobject of a fixed shape,
settling under gravity in a viscous fluid. The motion of such a
system has been evaluated from the multipole expansion of the
Stokes equations. The main results are the following.

It has been found that asymmetric microobjects orient
hydrodynamically while settling under gravity. This effect
is not observed for axially symmetric objects such as rods,
nor for regular shapes such as equilateral triangles, here
called stars. However, chain-like conglomerates made of two
identical straight arms in general orient towards a vertical ‘head
down’ equilibrium configuration; that is, towards a V-shape.
This process is relatively slow in comparison to the cluster
sedimentation, but definitely not negligible. We have checked
that the hydrodynamic orienting is observed for chains made
of a central particle with the attached two identical straight
arms made of a certain number of spinning or rigid beads, for
example ten spheres at each arm. The central particle may be
the same size as the other ones, or larger, e.g. 10 times larger,
and even slightly less dense than the arm beads.

It has been shown that freely rotating particles in chain-
like conglomerates can spin even if their surfaces touch each
other. The spinning can be even faster than the chain rotation.
The spinning particles speed up the conglomerate settling by
a few per cent, and they significantly enhance its tendency to
orient vertically, in comparison to the rigid body. Spinning also
speeds up the settling of stationary configurations of spheres
separated from each other.

Naturally, the hydrodynamic orienting found in this work
is important for efficient swimming of microorganisms which
are more dense than the fluid. The results are also relevant
for suspensions of chain-like conglomerates settling under
gravity. On a long timescale, while reorienting takes place, the
suspension structure and settling speed may change, leading
to ordering of the sediment and possible applications to
segregation and filtration techniques.
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Appendix A. How to evaluate mobility of a
conglomerate

For a system of N particles separated from each other, the
6 × 6 mobility matrices μi j form a 6N × 6N tensor, which is

evaluated as the inverse of the 6N×6N friction tensor, made of
6 × 6 friction matrices ζ i j . The latter relate the external forces
and torques, Fi and Ti , exerted on a particle i = 1, . . . , N ,
to the translational and angular velocities, U j and Ω j , of a
particle j = 1, . . . , N ,

(
Fi

Ti

)
=

N∑
j=1

ζ i j ·
(

U j

Ω j

)
. (A.1)

In a conglomerate, the particles touch each other, and
some of the ζ i j components become infinite. Instead of
using equation (A.1), it is therefore necessary to eliminate the
forbidden degrees of freedom (relative motions). This is done
by constructing the conglomerate friction as the sum of the
relevant combinations of ζ i j only,

ζ =
N∑

i=1

N∑
j=1

PT
i · ζ i j · P j . (A.2)

The 6 × 6 friction matrix ζ is finite at the contact, because the
combinations of ζ i j in equation (A.2) correspond to motions
that are free from the lubrication singularities. By inverting ζ ,
we obtain the conglomerate mobility,

μ = ζ−1. (A.3)

In the following, we construct the operators Pi for two
different types of conglomerates. First, a rigid system is
considered, for which all relative motions are excluded. Then,
a conglomerate with spinning particles is analyzed.

A.1. Hydrodynamics of a rigid system

A rigid motion of a conglomerate made of N spheres is
characterized by the translational velocity U of an arbitrarily
chosen center of reference R and conglomerate rotational
velocity Ω. Then, the translational and rotational velocities
of the individual sphere centers, i = 1, . . . , N , are given as

Ui = U + Ω × (ri − R), (A.4)

Ωi = Ω, (A.5)

or equivalently,(
Ui

Ωi

)
= Pi ·

(
U
Ω

)
, i = 1, . . . , N, (A.6)

where the 6 × 6 matrices Pi are given by the relation,

Pi =
(

I Ptr
i

0 I

)
, (A.7)

(Ptr
i )αβ = εαβγ (riγ − Rγ ). (A.8)

The total force F and torque T with respect to the center R,
exerted externally on the conglomerate, have the form,

F =
N∑

i=1

Fi , (A.9)
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T =
N∑

i=1

[Ti + (ri − R)× Fi ] (A.10)

or equivalently,

(
F
T

)
=

N∑
i=1

PT
i ·
(

Fi

Ti

)
, (A.11)

where T stands for the matrix transposition. By inserting
equations (A.1) and (A.6) into equation (A.11), we relate the
total external force and torque on the conglomerate to its
translational and rotational velocities,(

F

T

)
= ζ ·

(
U

Ω

)
, (A.12)

with the conglomerate friction ζ given by equation (A.2).
Writing the conglomerate velocities explicitly in terms of the
corresponding components of the mobility μ = ζ−1,(

U

Ω

)
=
(

μtt μtr

μrt μrr

)
·
(

F

T

)
, (A.13)

and choosing the center of mass as the reference center, to
obtain T = 0, we recover the relations (4) and (5), with the
rigid-chain mobility matrices μtt and μrt .

A.2. Hydrodynamics of a chain made of beads

Let us now consider a chain of three beads. The sphere 2
touches the other spheres, but the spheres 1 and 3 are separated
from each other and therefore are able to spin along r̂12 and
r̂32, respectively. The motion of the chain is characterized by
the translational velocity U of an arbitrary center of reference
R, the chain rotational velocity Ω, and also by the two spinning
velocities ω1 and ω3. Then, the translational and rotational
velocities of individual sphere centers are given by the relation,

Ui = U + Ω × (ri − R), i = 1, 2, 3, (A.14)

Ωi = Ω + ωi r̂i2, i = 1, 3, (A.15)

Ω2 = Ω (A.16)

or equivalently,

(
Ui

Ωi

)
= Pi ·

⎛
⎜⎝

U

Ω
ω1

ω3

⎞
⎟⎠ , i = 1, 2, 3, (A.17)

with the 6 × 8 matrices Pi defined with the use of the
same equation (A.8) for Ptr

i , but now differently than in
equation (A.6),

P1 =
(

I Ptr
1 0 0

0 I r̂12 0

)
, (A.18)

P2 =
(

I Ptr
2 0 0

0 I 0 0

)
, (A.19)

P3 =
(

I Ptr
3 0 0

0 I 0 r̂13

)
. (A.20)

Then, equation (A.2) is used to evaluate the 8×8 chain friction
matrix ζ . It relates the chain velocities U , Ω, ω1 and ω2, to
the total external forces and torques (A.9) and (A.10), and the
torque components t1 = T1 · r̂12 and t3 = T3 · r̂32,⎛

⎜⎝
F

T

t1
t3

⎞
⎟⎠ = ζ ·

⎛
⎜⎝

U

Ω
ω1

ω3

⎞
⎟⎠ . (A.21)

Evaluating the chain mobility μ = ζ−1, we obtain,⎛
⎜⎝

U

Ω
ω1

ω3

⎞
⎟⎠ = μ ·

⎛
⎜⎝

F

T
t1
t3

⎞
⎟⎠ . (A.22)

In our system, the spheres are identical, R is the center-of-mass
position, T = 0 and t1 = t3 = 0. Therefore, ω1 = −ω3 = ω

and we obtain the relations (4)–(6).
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